ESS319-IIC GID-3-EV03.3.1.1

ESS319-IIC Digital Pressure Sensor

■ Range: -100kPa...0kPa~10kPa...100MPa ■ Output: I2C ■ Accuracy: ±0.5%/FS (pressure); ±0.5°C (temperature) ■ Pressure Type:

Gauge/Absolute Power Supply: 3.3V

Description

ESS319-IIC Digital Pressure Sensor can transfer the measurement signals of pressure and liquid level to IC digital output. With the fast and accurate interface, the ESS319-IIC is used to build an Internet of Things using a microcontroller. It can read data and control power on and off to reduce power consumption through microprocessor operation.

ESS319-IIC Digital Pressure Sensor is available ranges from -100KPa to 100MPa.

Key Features & Benefits

- Digital compensation for sensor offset, sensitivity, temperature drift and nonlinearity
- 32-bit customer ID field for module traceability
- Digital output of temperature and pressure in I2C bus mode
- Fast power-on to data output response: 3ms
- \bullet Low power consumption, sleep mode operation, as low as 5 $\mathrm{u}A$, current consumption depends on the programmed sampling rate
- Operating temperature: -40°C to + 85°C
- Wide supply voltage capability: 3.3V

Standard Range

Range	Overload	Output/F.S (mV)	Typical Value(mV)	Pressure
0~10KPa	300%	35~60	45	G
0~20KPa	300%	70~110	90	G/A
0~35KPa	300%	55~80	70	G/A/D
0~70KPa	300%	55~80	60	G/A/D
0~100KPa	300%	60~85	75	G/A/D
0~200KPa	300%	60~85	75	G/A/D
0~400KPa	300%	60~80	70	G/A/D
0~600KPa	200%	90~120	100	G/A/D

Technical Parameters

Parameters	Тур.	Max.	Unit
Nonlinearity	0.2	0.5	%FS
Hysteresis	0.05	0.1	%FS
Repeatability	0.05	0.1	%FS
Zero Output	±1	±2	mV DC
FS Output	100		mV DC
Input/ Output	2.6	3.8	kΩ
Zero Temp. Drift*	±0.15	±0.8	%FS,@25°C
Sensitivity Temp. Drift*	±0.2	±0.7	%FS,@25°C

ESS319-IIC GID-3-EV03.3.1.1

0~1.0 MPa	200%	125~185	150	G/A/D
0~1.6 MPa	200%	80~120	100	G/A/D
0~2.0 MPa	200%	50~70	60	G/A/D
0~3.5 MPa	200%	100~120	110	G/A/D
0~7.0 MPa	200%	120~150	135	G/A
0~10 MPa	200%	180~230	200	G/A
0~25 MPa	150%	140~170	150	S
0~40 MPa	150%	230~280	250	S
0~60 MPa	150%	100~160	130	S
0~100 MPa	150%	100~150	120	S

Notes: G for Gauge pressure; A for Absolute pressure; D for Differential pressure; S for Sealed gauge.

	Long-term Stability	0.1	%FS/year
--	---------------------	-----	----------

Range -100kPa~100MPa

*The typical value of $0\sim10$ kPa and $0\sim20$ kPa's zero temperature drift and sensitivity temperature drift is 0.4%FS@25%C, max value is 1.6%FS@25%C

Construction Performance

Diaphragm: Stainless Steel 316L **Housing:** Stainless Steel 316L

Pressure leading tube: Stainless Steel 316L O Ring: Φ16*1.8mm (nitrile rubber or viton)
Measuring Medium: Which is compatible with

SS316L, viton, nitrile rubber **Packing Medium:** Silicon Oil

Net weight: 20-30g

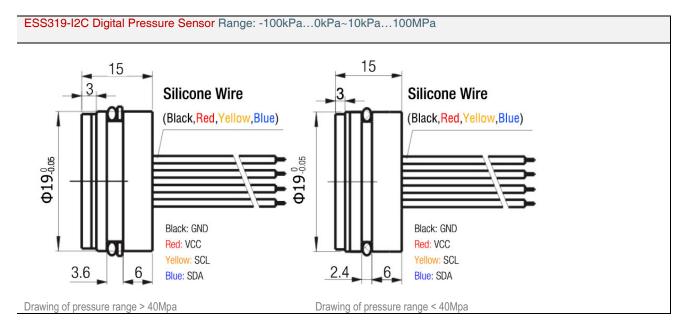
Electric & Environment Performance

Power supply: 3.3±0.1Vdc;

Insulation Resistance: $500M\Omega@500VDC$

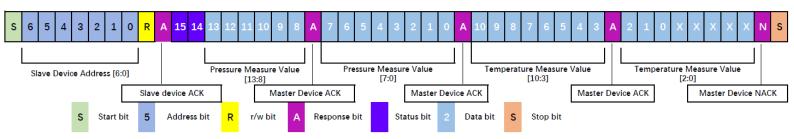
Overpressure: 1.5~3 times FS Vibration (20~500Hz): 20G Storage Temp.: -40~+125 °C Operating Temp.: -40~+85 °C

Compensation Temp.: 0~50°C; -10~80°C

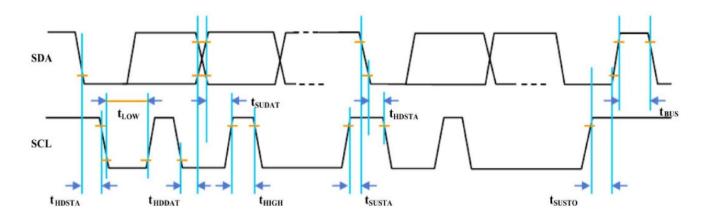

@ 0~70 (7kPa,20 kPa,35 kPa

Drawing

Ordering Procedure

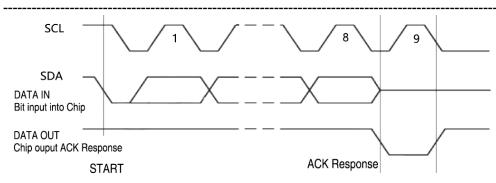

ESS3	High Stab	le OEM	Piezores	sistive Ser	sor			
	Code	Model						
	19-IIC	Digita	Pressure	e Sensor				
		Cod	Span		Code	Span	Code	Span
		R01	0~10KF	Pa	R07	0~1.0MPa	R13	0~40 MPa
		R02	0~35KF	Pa	R08	0~2.0Mpa	R14	0~60 MPa
		R03	0~70KF	Pa	R09	0~3.5 MPa	R15	0~100 MPa
		R04	0~100K	Па	R10	0~7.0 MPa		
		R05	0~200K	(Pa	R11	0~10.0 MPa		
		R06	0~400K	Ра	R12	0~25 MPa		
			Code		ssure Type			
			G	Gauge				
			Α	Absolute				
			S	Sealed 0				
					Power Supply			
					3.3V			
				E				
					Code Pressure connection			
					0 O-ring -NBR			
					1 O-ring -Viton			
					Code Electric connection			n
					1 Kovar pin			
					2 Rubber flexible silicon wires (10cm)			licon wires (10cm)
ESS3	19-IIC	R10	G	С	0	2		

Note: ① Extremely attention must be paid to sensor installation process to avoid any miss conduction that affect the sensor performance, ② please protect the diaphragm and the compensated board carefully to prevent any damage. ③ Please contact us if your requested working temperature lower than -20 °C



Address 0x28 & Data Reading for IIC Communication

For read and write operations, the master device commands to start, and sends an ACK (acknowledgement) as a slave device to indicate success. The factory address of the slave device is 0x28, and the communication sequence is shown as below.



Data Reading Sequence

Parameters	Code	MIN	TYP	MAX	UNITS
SCL Time Frequency	f _{SCL}	100		400	kHz
Time of Starting Condition Protection to SCL	t _{HDSTA}	0.1			us
Width of Minimal SCL Time at Low Level	t _{LOW}	0.6			us
Hight of Minimal SCL Edge Time	t _{HIGH}	0.6			us
Start Terms Setting to SCL Edge Time	t _{SUSTA}	0.1			us
Time of Data Projection SDA to SCL Edge Time	t _{HDDAT}	0			us
Time of Data Establish SDA to SCL Edge Time	t _{SUDAT}	0.1			us
Time of Stop Terms Setting SCL	t _{susto}	0.1			us
Bus Idle Time Between Stop & Start Terms	t _{BUS}	2			us
The Lower Level/Height/Width should no less than Minimal S	SCL Cycle				

Reference Value of Output

Parameters	Тур	Unit
Zero pressure output (5%)	333	Hexadecimal
Zero pressure output (10%)	666	Hexadecimal
Full-scale pressure output (90%)	399A	Hexadecimal
Full-scale pressure output (95%)	3CCB	Hexadecimal

Formula of Temperature Calculation

- T=200xTv/2047-50
 - ✓ Tv: IIC Temperature Output (Decimalism)
 - ✓ T: Real Temperature

Formula of Pressure Calculation

- P=(Pv-1638)xPr/13110
 - ✓ Pv: IIC Pressure Output (Decimalism)
 - ✓ Pr: Pressure Range
 - √ P: Real Pressure
 - ✓ Pr share the same unit with P

FOR EXAMPLE: If the range Pr is 4Mpa, the value of 4916 which obtained from IIC, so the real pressure P=(4916-1638)x4/13110=1.00015Mpa